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Compared to other available methods, ac dielectrophoresis is particularly well-suited for the manipulation
of minute particles in micro- and nano-fluidics. The essential advantage of this technique is that an ac
field at a sufficiently high frequency suppresses unwanted electric effects in a liquid. To date very little
has been achieved towards understanding the micro-scale field-and shear driven behavior of a suspension
in that, the concepts currently favored for the design and operation of dielectrophoretic micro-devices
adopt the approach used for macro-scale electric filters. This strategy considers the trend of the field-
induced particle motions by computing the spatial distribution of the field strength over a channel as if it
were filled only with a liquid and then evaluating the direction of the dielectrophoretic force, exerted on a
single particle placed in the liquid. However, the exposure of suspended particles to a field generates not
only the dielectrophoretic force acting on each of these particles, but also the dipolar interactions of the
particles due to their polarization. Furthermore, the field-driven motion of the particles is accompanied by
their hydrodynamic interactions. We present the results of our experimental and theoretical studies which
indicate that, under certain conditions, these long-range electrical and hydrodynamic interparticle
interactions drastically affect the suspension behavior in a micro-channel due to its small dimensions.

NASA/CP—2004-213205/\VVOL2 177



Electric-field-driven Phenomena for Manipulating Particles in Micro-Devices
Boris Khusid' and Andreas Acrivos®

! New Jersey Institute of Technology, University Heights, Newark, NJ 07102
Email: khusid@adm.njit.edu
? The City College of New York, 140th Street & Convent Avenue, New York, NY 10031

Email: acrivos@scisun.sci.ccny.cuny.edu

Compared to other available methods, ac dielectrophoresis is particularly well-suited for the
manipulation of minute particles in micro- and nano-fluidics. The essential advantage of this technique is
that an ac field at a sufficiently high frequency suppresses unwanted electric effects in a liquid (for water,
in particular, in the MHz-frequency range). To date very little has been achieved towards understanding
the micro-scale field- and shear driven behavior of a suspension in that, the concepts currently favored for
the design and operation of dielectrophoretic micro-devices adopt the approach used for macro-scale
electric filters. This strategy considers the trend of the field-induced particle motions by computing the
spatial distribution of the field strength over a channel as if it were filled only with a liquid and then
evaluating the direction of the dielectrophoretic force, exerted on a single particle placed in the liquid.
However, the exposure of suspended particles to a field generates not only the dielectrophoretic force
acting on each of these particles, but also the dipolar interactions of the particles due to their polarization.
Furthermore, the field-driven motion of the particles is accompanied by their hydrodynamic interactions.

We present the results of our experimental and theoretical studies [1-4] which indicate that, under
certain conditions, these long-range electrical and hydrodynamic interparticle interactions drastically
affect the suspension behavior in a micro-channel due to its small dimensions. As we shall demonstrate,
this leads to the formation and propagation of the concentration front in suspensions subject to a high
gradient electric field. This phenomenon provides a new method for strongly concentrating particles in
focused regions of micro-devices. Potential applications of the field-driven phenomena for advanced life
support and environmental monitoring & control systems for long-duration missions include a wide range
of electro-micro-devices for multiphase separation, bubble manipulation, monitoring particulate and
microbial background environment, etc. However, our experiments aboard the NASA research aircraft
KC-135 [4] revealed that an unexpectedly pronounced effect of a relatively weak gravity imposes certain
limitations on the use of ground-based tests for predicting the operation of electro-technologies in micro-
gravity.
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Experimental Results
1 Jum polystyrene spherical beads in DI water, 0.1% (v/v)
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Source: Bennett, Khusid, Galambos, James, Okandan, Jacqmln, Acrlvos, Appl Phys Lett, 83, 2003
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Flowing Heterogeneous Mixture

Beads and bacterial cells (heat-killed staphylococcus aureus)

10V

ptp’

15 MHz Flow rate 0.24 pL/s to 9.6 pL/s

Source: Bennett, Khusid, Galambos, James, Okandan, Jacqmin, Acrivos, Appl Phys Lett, 83, 2003
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Flow velocity Particle velocity

Modeling

8.73%

Single bolus

0.1%(v/v)-suspension
Flow rate 8.64 pL/s

45.4% Voltage 10Vptp

Average flow
velocity 36 pm/s

56.4% 1, concentration

2, field strength

Two boluses

Source: B;nett,_Khuéidn, Galz_la)os, James,— Okandan, Jacqmin, Acrivos, Appl Phys Lett, 83, 2003
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Field-induced Segregation
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Multi- Channel Apparatus
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KC-135 Experiment
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Dielectrophoresis in Microgarvity
Skv, 100Hz,

Aggregation patterns, 10s

Time.s
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Microsensor Technologies for Plant
Growth System Monitoring

Chang-Soo Kim
Depts. of Electrical & Computer Eng. and Biological Sciences
Univ. of Missouri-Rolla

Critical need of precise control of root zone;
wetness, oxygen, nutrients, temperature.

|deal sensor configuration; miniaturization,
multiple, array, low power, robustness.

Thin film flexible microsensor strips for
dissolved oxygen and wetness detection.

Flexible microfluidic substrate for rhizosphere
monitoring and manipulation.

Intelligent Microsystem Laboratory (http://web.umr.edu/~ckim) University of Missouri-Rolla
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Experimental setup with a porous tube growth system

* Dissolved oxygen microsensor strip
(3-electrode amperometric measurement 1 et 22

L 2R~

by enwrapping the porous tube surface)

L

‘ _-"r“”'lll'llllli.‘

3 inches

» Wetness sensor strip (4-electrode conductivity
measurement along the porous tube surface)

0= Intelligent Microsystem Laboratory (http://web.umr.edu/~ckim) University of Missouri-Rolla
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Dissolved oxygen measurement on the porous tube surface

- 1 A :
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<@ = |ntelligent Microsystem Laboratory (http://web.umr.edu/~ckim) University of Missouri-Rolla
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Wetness measurement on the

porous tube surface
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* A steep decrease of surface impedance at the
transition from (-) to (+) pressure.

Intelligent Microsystem Laboratory (http://web.umr.edu/~ckim) University of Missouri-Rolla
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Experimental setup with a particulate growth system
(Turface® 1-2 mm size particulate)

Wetness sensor
(band electrodes)

A

(Flooding) (Suction)

___ Nutrient _—+

solution >
: : / Time
Acrylic container

(Side view) (Front view)

Particulate

d

O, sensor
(4x1 array)

Porous
- tube

Water level

 Dissolved oxygen and wetness measurements within an
unsaturated Turface® media.

» Repeated flooding and suction of nutrient solution using
the embedded porous tube.

Intelligent Microsystem Laboratory (http://web.umr.edu/~ckim) University of Missouri-Rolla
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Dissolved oxygen measurements within the particulate
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* With a commercial
oxygen probe;

¢+ - Convergence to O, value

of inner sol. with repeated
flooding.

- Convergence to 20%
value (air-sat. value) with
suction.

« With a microsensor array;

- Better reflection of O,
value of inner sol. with
repeated flooding.

- Better reflection of O,
value of inner sol. with
repeated suction.

Intelligent Microsystem Laboratory (http://web.umr.edu/~ckim) University of Missouri-Rolla
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Wetness measurement within the particulate
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* Variations of the impedance due to repeated
solution flooding and suction.

Intelligent Microsystem Laboratory (http://web.umr.edu/~ckim) University of Missouri-Rolla
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Flexible microfluidic substrate for
rhizosphere monitoring and manipulation

Microsensor ¢ Ryt hair growth on
the surface of a
porous membrane
with underlying
microfluidic channels
and microsensor
arrays.

« Exemplary layout of
planar microfluidic
substrates.

Intelligent Microsystem Laboratory (http://web.umr.edu/~ckim) University of Missouri-Rolla
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Conceptual growth system using flexible
microfluidic rhizosphere substrate

< Sprout
N Sprout / Supported seed
< Supported seed < Root hair

) %7 Porous membrane
<+~—— Microchannel

<+<=—— Microchannel

<+— Root hair Flexible

ﬁ ﬁ ﬁ ﬁ substrate
<+— Porous = = = =

/4 membrane

Optical 2-D image analysis and/or
biochemical remote sensing

[ Flexibl
Supporting exible substrate (through translucent substrate)

rod (wrapping a rod)

* Rhizosphere manipulation using embedded microchannels
(e.g. change of nutrient solution composition).

* Rhizosphere in situ monitoring using embedded microsensor
arrays or remote optical sensors.

* Root growth pattern analysis using optical imaging.

> —_ Intelligent Microsystem Laboratory (http://web.umr.edu/~ckim) University of Missouri-Rolla
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Summary

Demonstration of feasibility of microsensor for porous
tube and particulate growth systems.

Dissolved oxygen.
Wetness.

Flexible microfluidic substrate with microfluidic
channels and microsensor arrays.

Dynamic root zone control/monitoring in microgravity.
Rapid prototyping of phytoremediation.
A new tool for root physiology and pathology studies.
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